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Abstract-A study is made of the effects of variation in the lamination and geometric parameters
of multilayered composite cylinders on the accuracy of the static and vibrational responses predicted
by eight modeling approaches. based on two-dimensional shear-deformation shell theories. The
standard of comparison is hlken to be the /'.'I:<lcl three-dimensional elasticity solutions. and the
quantities compared include both the gross response characteristics (e.g. vibration frequencies. strain
energy components, average through-the-thickness displacements and rotations): and detailed.
through-the-thickness. distributions of displacements. stresses and strain energy densities. Based on
the numerical studies conducted. a predictor ·corrector approach. used in conjunction with the first­
order shear-deformation theory (with five disphlcement parameters in the predictor phase). appears
to be the most effcctive among the eight modeling approaches considered. For multilayered ortho­
tropic cylinders the respllnse qu.mtities obtained by the predictor-corrector approach are shown to
be in close agreement with the e~act three-dimension.tl etastidty solutions for a wide range of
lamination .lI1d geometric parameters. The potential of this approach for predicting the response
of multilayered shells with Cllmplicated geometry is also discussed.

l. INTRODUCTION

Since the first reported investigation of 'lllisotropic shells of revolution (Shtayerman, 1924),
considerable progress has been made in the analysis of laminated and anisotropic shells.
Reviews of the many contributions on this subject are given in a number of survey papers
(Ambartsumian, 1966, 1968; Hert ami Egle, 1969; Hert and Francis, 1974; Bert. 1975;
Grigolyuk and Kogan, 1972; Grigolyuk and Kulikov, 1988; Habip, 1965; Kapania, 1989;
Pclekh, 1975; Teters, 1977) and monographs (sec, for example, Alfutov et al., 1984;
Ambartsumian, 1974; Grigorenko and Vasilenko, 1981; Grigorenko et al., 1987; Kovarik,
1985; Librcseu, 1975; Pelekh and Lazko, 1982; Rasskazov e( al., 1986; Vanin and
Semeniuk. 19~0).

Most of the early public:.ttions on lamin'lted cylindriC'll shells, and laminated shells in
general, were limited to predicting the gross response characteristics (vibration fre4uencies,
buckling loads, average through-the-thickness displacements and rotations) of thin shells.
The classical lamin'lted shell theory, incorporating the Kirchhoff-Love hypotheses of
straight inextensional normals for the entire shell package (see Ambartsumi.tn, 1966. 1974;
Bert, 1975), is adequate for this purpose. The expanded use of fibrous composite materials
in aircraft, automotive, shipbuilding and other industries has stimulated interest in the
accurate prediction of the detailed response and failure characteristics of laminated aniso­
tropic shells. Several modeling approaches have been proposed which take account of the
relatively low ratio of the transverse shear modulus to the in-plane modulus in most of the
advanced composites in use to date. Some of these modeling approaches are extensions of
similar approaches used for isotropic shells, and include: (I) three-dimensional and quasi­
three-dimensional elasticity models (Ahmed, 1966; Boresi, 1965; Chandrashekhara and
Gopalakrishnan, 1982; Chou and Achenbach, 1972; Eason. 1963; Grigorenko and
Vasilenko, 1981 ; Grigorenkoetal., 1984; Karlsson and Ball, 1966; Misovecand Kempner,
1970; Noorand Rarig, 1974; Noor,tnd Peters, 1989a; Roy and Tsai, 1988;Srinivas.1974);
(2) first-order shear-deformation shell theories based on linear displacement and/or strain
variation through the entire shell thickness (Bert and Kumar, 1982; Dong and Tso, 1972;
Vasilenko and Golub, 1983); and (3) higher-order shear-deformation shell theories based
on nonlinear (or piecewise linear) variation of displacements and/or stresses through the
shell thickness (Barbero et al., 1990; Bhimaraddi, 1985; Khdeir e( al., 1989; Librescu e(
al., 1989; Narusberg and Pazhe, 1982; Reddy and Liu, 1985; Whitney and Sun, 1974).
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In quasi-three-dimensional models simplifying assumptions are made regarding the
stress (or strain) state in the shell (or in the individual layers). but no a priori assumptions
are made about the distribution of the different response characteristics in the thickness
direction. The use of both three-dimensional and quasi-three-dimensional models for pre­
dicting the response characteristics of multilayered cylinders. subjected to complicated
loads. is computationally expensive. and therefore is not feasible for practical problems.
Experience with two-dimensional shear-deformation theories has shown them to be in­
adequate for the accurate prediction of transverse stresses and deformations. This is par­
ticularly true when first-order theories [in which the transverse shear strains are assumed
to be constant within each layer (Noor and Peters (1989b)] are used for analyzing medium­
thick and thick cylinders.

A simple approach for the accurate evaluation of transverse stresses in composite
cylinders is to use two-dimensional shear-deformation shell theory for calculating the in­
plane stresses. and then apply the three-dimensional equilibrium equations to determine
the transverse stresses. An improvement of this approach was proposed (Noor and Peters.
1989b) in which better estimates were predicted for the transverse shear stiffnesses and then
used to correct the gross response characteristics.

Most of the literature on the accurate evaluation of detailed response characteristics
of compositeeylinders is limited to laminated cylinders with few layers which arc rarely llsed
in practice. The establishment of reliable and etficient modeling techniques for simulating the
response of multilayered composite cylinders remains a challenging task and is the focus
of the present study. Spccifically, the objective of this paper is to assess the accuracy of a
number of computational models. based on two-dimensional shear deformation theories.
for multilayered composite cylinders. The composite cylinders considered herein consist of
a number of perfectly bonded layers. The individual layers of the cylinder arc assumed to
be homogeneous and orthotropic. The sign convention for the diflCrent displacement and
stress components arc shown in Fig. I.

The computational models considered in this study can be divided into three categnries:
glonal approximation models, discrete-layer models, and a predil.:tor corrector approach.
The three categories arc described subsequently. Extensive nUlllerical results arc presented
showing the eflects of the different lamination and geometric parameters of the composite
\:Ylinder on the accuracy of the linear stress and free vibration responses obtained by the
different models.

2. GLOBAL APPROXIMATION MODELS

Figure I shows the geometric characteristics of the multilayered i.:ylinder as follows:
L is length of the cylinder; ro is radius of the middle surface; and II is the total thickness
of the \:ylinder. The dimensionless coordinates ~, ( arc introduced, where:

_ r-ro Xl
~ =_.".. --- = -_..

II II
(I)

2.1. KiucfIIlllic llSSUfllpliotls
The two-dimensional shear-deformation shell theories considered herein arc based on

the following displacement expansions in the thickness coordinate:

J..

1/= '[d'\\"dl

J .....t)

J,

I" = Il'l!l(Xl)'
I 0
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fig. l. Characteristics of I;uninaled nrlhnlrnpic eylindcr and sign convcnlion for slrcsscs allli
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J..
II' = L: 1I·lil(X\)'

I' II

(2)

where tl. I" II' arc the displacement components in the x, 0, and r coordinate directions.
respectively. The displacement parameters ti /\ t· lI ) and \l,lI) are functions of x and () only.
In eqns (2), and henceforth, a superscript between parentheses does not refer to an exponent.
The expressions of the strain components in terms of the displacement parameters are given
in Appendix A.

2.2. Displacement expallSio1/S
For asymmetric response, each of the displacement parameters in eqns (2) is expanded

in a double Fourier series in the ~- and (}-dirt..'Ctions such that the simply supported boundary
conditions along the curved edges are satisfied. The following expansions are used:

{
Ut.}1/1 {U:':~ cos m1t~ cos no}

= L L: t·:':~ sin m1t~ sin nO .
m- I n_ D (.. •

w w,,{~ Sin nm.; cos nO

(3)

The external surface loads are also expandcd in double Fourier series similar to the
displacement components in their respective directions. For free vibration problems the
right-hand sides of eqns (3) are multiplied by eft". where (J) is the frequency of vibration of
the cylinder and t is time. Note that the displacement expansions. eqns (3), provide exact
representations for the stress and free vibration responses of orthotropic cylinders.



A. K. :-';"01( t'l 1.11

2.3. GOl"t!fninq t!,!II(J(ions

The governing displacement equations of the cylinder are obtained bv evaluating the
potential and kinetic energies of the shell in terms of the displacement p~~rameters [~sing
eqns (A I HA5). Appendix A] and applying Hamilton's principle (or. for static loading. the
principle of minimum potential energy). Exact integration is performed in the thickness
direction. For simply supported orthotropic cylinders the governing equations uncouple in
harmonics. For each pair of harmonics. m and n. the governing displacement equations can
be ""Tinen in the following compact form:

(4)

where: X;"',, is the vector of unknown displacement parameters. It;,;;,. r;,;,~ and \1';,:,',: [K]",,,
and [.\1] are the stiffness and mass matrices of the cylinder: : P :"", is the vector of external
loading. For static loading problems Ul",,, = O. and for free vibration problems: P:",,, = o.

.1 DISCRETE-LAVEl{ MODELS

The disl:n:te-layer theories considen:d herein are based on the following piecewise
line;tr displacement approximations in the thickness I:oordinate (see. for e.\ampk. Barbero
ct al.. 1990):

I

ti ~~ lr' + I ti'd'll(k. i)

I

l' .", r"Ii +- L: r'd'll(k. I)

, I

(5)

where '/1(k. i) are piecewise linear functions in \' \0 given by:

= I.

i = k

i F- k.

r;or free vioration proolems the right-hand sides ofeqns (5) are multiplied bye""'. The total
number of displacement parameters equals 2NL + 3, where N L is the total number of layers
in the cylinder. The strain displacement relations ill ('{lc!J layer are taken to be the same as
those of the first-order shear deformation theory (set.: Dong and Tso. 1972; Noor and
Pett.:rs. l\)lS\)b). A sirnplilit.:d discrt.:te layer model is obtained by imposing tht.: continuity of
tht.: transwrse shear strt.:sst.:s (T" and (T,I/. at the interfal:es bt.:twt.:en layers. Tht.: numbt.:r of
displacemt.:nt pararlll.:ters is then n:duct.:d to five (as in the first-order shear deformation
shell theory,sl.:e. for l.:x.ampk, DiS.:uiva. 1')::-17).

-I. PREDICTOR CORRECTOR :\PI'ROACII

It has long oeen recognizt.:d that thl.: range or validity of tht.: first-order shear­
dt.:formation shell thl.:ory is strongly dl.:pendent on the fal.:tors used in adjusting tht.: transverse
shear stiffncsses of the cylinder. Several approaches have been proposed for calculating the
composite shear correction factors for ditlcrent laminates. 1\:lost of these approaches arc
bast.:d on matching ct.:rtain gross response characteristics. as predicted by the first-order
theory. with the corresponding characteristics of the three-dimensional elasticity theory.
Among tht.: gross responst.: characteristics arc transvt.:rse shear strain energy. natural fre­
quency associated with the thickness shear vibration mode. and velocity of propagation of
a !lexural \vave (see. for example. Chow. 1971: Whitney. 1\)73). However. all the shear
correction factors proposed in the cited references arc calculated a priori and arc therefore
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functions of the lamination parameters only. They do not account for the differences in the
distribution of the transverse shear strains in the thickness direction resulting from different
loading conditions. As an attempt to incorporate the actual distribution of the transverse
shear strains in the thickness direction of the cylinder. in calculating the transverse shear
stiffnesses. a predictor-<:orrector approach was proposed in Noor and Peters (1989b) for
the a posteriori determination of accurate shear correction factors and for adjusting the
transverse shear stiffnesses of the multilayered cylinder. The approach is highlighted herein.

The predictor phase consists of using a first-order shear-deformation theory (see
Appendix A) to calculate the initial estimates for the gross response characteristics of the
cylinder (vibration frequencies. average through-the-thickness displacements and rotations).
as well as the in-plane stresses. Then. three-dimensional equilibrium equations and consti­
tutive relations are used to calculate: (a) transverse shear and transverse normal stresses
and strains; (b) through-the-thickness strain energy density distributions; and (c) accurate
a posteriori estimates for the composite shear correction factors. The estimates of the
composite shear correction factors arc obtained by matching the integral of the transverse
shear strain energy in the thickness direction with that obtained from the first-order theory
(see Noor and Peters, 1989b). These composite correction factors are used to adjust the
transverse shear stiffnesscs of the cylinder. The corrector phase consists of using the adjusted
transverse shear stitfnesses, in conjunction with a reanalysis procedure. to obtain better
estimates for the gross response characteristics. as well as for the distributions of dis­
placements and in-plane stresses in the thickness din:ction. The ctfcctivem:ss of this two­
phase procedure is demonstrated in the :>ection on numerical studie~.

5. TllREE·DIMENS10N;\L MODI'I.S

In order to assess the accur~lcy of the predictions or the different two-dimensional
models. exact three-dimensional elasticity Solulions arc obtained for multilayered composite
cylinders. The cylinders arc assullIed to he ortlwtropic and arc simply supportl.'d along the
curved edges.

Each of the displacement and stn:ss components is expanded in a double-Fourier series
in the .;- and O-directions such that the boundary conditions along the curved edges arc
satisfied. The governing elJu~ltions of the cylindl.'r an: thereby reduced to simultaneous
ordinary dillcrential elJuations which uncouple in harmonics. For each pair of harmonics.
a Frobenius-type method is applied f'()r the solution of tht: ordinary dillcrl.'ntiall.'lJuations.
The method is dt:scribed in detail in Srinivas (I \174).

6. NUMERICAL STUDIES

The accumcy of the stress and vibrational responses of l1lultilayen:d cylinders predicted
by differt:nt two-dimensional models is strongly dependent on the signilic~lnct: of tht: truns­
vt:rse shear deformations which, in turn, dept:nds on a numbt:r of parameters including:

(a) lamination parameters (namely. number of layers, stacking Sl.'lJuence. degree of
orthotropy. and fiber orient<ltion of the different layers);

(b) geometric par..meters (e.g., thickness-to-radius and length-to-radius r.. tios);
(c) type and rate ofvariation ofexternal loading (e.g.. longitudinal and cin:umferential

wave numbers); ..nd
(d) bound~lry (or support) conditions.

Due to the large number of these p~lrametcrs and the fact that dosed form (or analytic)
solutions arc only obtainable for cylinders with simple geometries (e.g.. circular prollle and
constant stiffness). loading and boundary conditions, it is impractical to present quantitative
results of a general nature. Several numerical studies have been made of the accuracy of
the static and free vibrational responses predicted by different two-dimensional models (see.
for example. Grigorenko and Vasilenko, 1981 : Khdeir el al., 1989; Librescu ('I al., 1989).
However. most of these studies were for laminated cylinders with a sm~11I number of layers.



1174 A. K. ~OOR I![ "I.

Herein, the results of parametric studies for multilayered composite cylinders are
presented. These studies were conducted to provide some insight into the effects of variation
in the lamination and geometric parameters of multilayered composite cylinders on the
accuracy of the response characteristics predicted by eight ditferent modeling approaches
based on two-dimensional shear-deformation laminated shell theories. The modeling
approaches considered are listed in Table I, and will henceforth be referred to as models
1-8.

The composite cylinders considered in the present study are simply supported laminated
circular cylinders. The fibers of the different layers alternate between the circumferential
and longitudinal directions. with the fibers of the top layer running in the circumferential
direction. The total thickness of the circumferential and longitudinal layers in each shdl
was the same. The material characteristics of the individual layers were taken to be those
typical of high-modulus fibrous composites. namely'

GuiEr = 0.5, Grri E r = 0.3356. l'U = 0.3, vrT = 0.49

where subscript L refers to direction of fibers and subscript T refers to the transverse
direction; Vcr is the major Poisson's ratio. For static stress analysis problems. the cylinders
were subjected to internal normal loading of the form: p, = po sin n:~ cos I/O; for free
vibration problems. only the lowest frcqucndes for each pair of m. fI and the associated
mode shapes and modal stresses were considered. For each problem. the solutions nbtained
by the afnrementioned modeling approaches were compared with exact three-dimensional
elasticity solutions.

Six paraml:lers were varied. namely. Ihe nllmber orlayers. .'IlL ; the degn:e of ort hoi ropy
of the individual layers. H[! /:.[; the thick ness-to-radius ratio.ltir,,; the Icngth-to-radius ratio
of the cylinder. Llr,,; the longitudinal and cin;ulllferential wave numhers. III and II. The

T"hlc I Mudehll~ appru"ehes used in tile ntlllleriGd stmlles

Mudd
no

I.IA

J

5

(,

7

[)eSl.:nptiun

First-order ~hear·

dcfonn"tiull lheory

First-order theory with
transv~rs~ normal
slr~ss~s and slrains
indullcd

Lo·( 'hrist~n~en
Wu I} pc lheory

llil:her-unkr shear
JcI\lftll"tion theory

Simplilied higher-order
lheory

DIscrete layer th~ory

Simplitied discrete layer
theor}

Predictorcorreclor
approach (sec Noor and
Peters. 1')1\90)

Tirrougir-Ihe-llllckncss
dlsplacemenl
assumptions

linear II. ,.

\:onstant u'

linear II, /. and H'

euhic II, ,.

quadratic II'

4uintic 1I. t" and H'

cuoie lI, t'

constant }1'

piecewise linear lI, I'

constant H' (through-the
thickness)

piecewise linear 1I. /.

constant \I' (through·th.:­
thickness)

Prcdi<:,tor phase
linear II, I"

constant H'

Corrector phase
inatchlni~-dEirl:iccments

( 'onslrallli
~ondi!tons un

sln:ss.t,;...

f1, ,,()

nonc

flllflC

BOUt:

f1, '" () lhroughout
and f1" and
f1", ." 0 at
top and hottolll
sur!;lees

f1. = 0 throughout

f1. '" ()

,:ontilluity of 11" and
f1", at layer interf'rces

PrcJletorphase
f1, = ()

Cllrr,:"t,'!.phas,:
none

Tolal numher
of displ''':':lllcnt

parameters

II

IX

5

1.VI.+3

5

5

In modd I. k, = k" = I, and in modcl 1A. they arc computed from the cylindrical hending condition of Ch,,\\'
(1971) and Whitney II 97J).
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number of layers was varied between 2 and 20, ELlEr between 3 and 30, hlrobetween 0.01
and 0.3. L/ro between 0.5 and 5.0, m between I and 3, and n betweeen 0 and 8. The
assessment of the accuracy of the eight modeling approaches listed in Table 1 included both
global response characteristics (vibration frequencies and strain energy components). as
well as detailed stress and displacement distributions in the thickness direction.

The effects of variation in the six parameters NL. ELlEr. /rro• L/ro. m and n on the
minimum vibration frequencies. and the energy components Vb<;. U'h and V,n (see Appendix
A). obtained by the three-dimensional model. are depicted in Figs 2. 3 and 4. As can be
seen from Figs 3 and 4, the transverse shear strain energy ratio. V,h! V, increases with the
increase in NL. EdEr. hjro and n. Even for cylinders with hlro = 0.1. V,hl V can exceed 0.2
(for ,vL = 10. ELlEr = 15. Llro= 1. and n > 4). The increase in U,hIU is associated with
a decrease in the ratio Vbel V. On the other hand. for all the vibration problems considered.
U,n/ U was found to be very small (less than 1%). For statically loaded cylinders Utn,' V
approaches 37% for thick multilayered cylinders with hlro = 0.3. Llro = l. ELlEr = 15.
f! ~ 8. and NL ~ 10 (Fig. 4).

An indication of the accuracy of the minimum vibration frequencies and the total
strain energy predicted by the models listed in Table I is given in Figs 5, 6 and 7, and Table
2. Figure 8 shows the effect of hlro on the distribution of displacements. stresses. and
transverse shear strain energy density in the thickness direction. obtained by the three­
dimensional elasticity model. As can be seen from Fig. 8, the distribution of Un and Un is
fairly insensitive to variations in /zlro. An indication of the accuracy of displacement, stress,
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Fig. 2. Effect oflamination and geometric parameters on minimum frequencies ofvibration predicted
by the three-dimensional elasticity model. Simply supported composite cylinders with E,/Er == 15.

GuiEr = 0.5. Grr/Er == 0.3356. Vir = 0.3 and "rr == 0.49. .
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hg. 3. !:fled of lamination and go:onl<:tric p'lramdo:rs on strain o:no:rgy componcnts. assoet:lto:d with
Illlllinllll1l vihration fro:qul:neio:s ohtaino:d hy Ihrel:·dil1ll:nslonal dastieity model. Simply supporto:d

clImp'hill: cylinders wilh (i'I'/:" O'i. (;:11,', 0.3356. I'u'= 0.3. \',1' ~ 0.49 and m ~ I.

and tranSVl:rsl: shl:ar strain ~n~rgy distributions pr~dil:ted by lllodels J .l:'; for mtillilay~r~d

-:ylinders is giv~n in Figs I) and 10 for the rr~~ vibration I:as~. and in Figs II and 12 for th~

statil: loading case. Each of the response quantities in Figs l:'; 12 is normaliz~d by its
maximum absolut~ value. obtained by the thr~~·dimensionalelasticity model. An indication
of th~ relativ~ magnitudes of the dilrcrent displacement and str~ss components shown
in Figs X 12 is provided by the ratios of their maximum \~t1u~sgiven in Tabk 3. An examination
of the nUlllerical r~sults rneals the following.

( I) As ~xp~cted. the accur~ll:y of the first·order sh~ar·dcrorll1ation theory (model I)
decr~as~s as !If" and II increast.: (s~e Tahle 2 and Figs 5·7). Tht.: rangt.: of validity of the
first·ord~r theory is strongly der~ndent on the values of the wmposite shear correction
factors used. k, and k". For frt.:e vihration problems when k, and k" were sdected to be I.
the error in tht.: minimum frequency for cylinders with !Iiro = 0.05. Lir" = I. and II = 8 is
2.8%. As !I/r" im:reases to 0.2. the error increases to 9.2 '%. \Vhen k, and k" were computed
from the cylindrical bending condition of Chow (1971) and Whitney (1973). the cor·
responding errors were less than 0.0 I 0.;, and 1.2 % (sec Table 2).

(2) Despite the larger numher of displacements of model 2. its predictions arc generally
less accurate than those of model I (see Figs 5 and 6). This is attributed to the assumption
of constant transverse normal strain. and piecewise constant transverse normal stresses.
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composite cylinders with NL= 10. £,1£,.= IS. G'TI£T=O.5. Grri£r=0.3356. v'T=0.3.

"rr = 0.·1'). Lor" = 1.0 and 11/ = I.
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Fig. 6. Effect or thickness ratio. h '". and circumrerentlal wave number. n. on the accuracy or the
total strain energy obtained by different models (see Table I). Simply supported composite cylinders
subjected to internal pressurep.=p"sin1t~cos"lJ.N£.= 10. EL;Er = 15. Gu ·'Er =O.5. GrrEr

= 0.3356. "r r = 0.3. vrr = 0,49 and Lr" = 1.0.

0.98

UiU•••CI

0.96

through the thickness in modd 2, which results in considnaoly overestimating the in-plane
stresses 11, and 11". An exception to that is the case ofstatil:ally loaded thick cylinders (with
It r" ;" 0.2, see Fig. 6).

(3) The glooal response charal:teristil:s predil:ted oy the higher-order shear-deformation
theories (nlOdds ) and 4) are fairly al:eurate, For multilayered l:ylinders with It r" .~ 0.2
and fI ~ ~, the ma:<imum errors in the minimum frequency of vioration were less than
2.5 '~;). Both modds) and 4 slightly overestimate the vioration frequenl:ies (see Fig. 5), For
the static loading Clse, they underl:stim~lte the total strain energy U (see Fig. (J). The small
ditrerem:es oetween the predictions of modds ) and 4 point to the slow l:onvergeno: of the
disp!al:ement expansions used, eqns (2). The distrioution of the transverse stresses through
the thil:kness, ootained by modds 3 and 4, is nut as al:l:urate as the gross response charac­
teristil:s (see Figs 9 and II), This is partil:u!arly truc for thl: transverse shear stn:sses, 11,..

and the transverse shear strain l:nergy density, U", ootained oy models 3 and 4; as well as
the modaltransvl:rse normal stresses, 11,. predided by modd 3 (see Fig. 9).

(4) The predil:tions of the simplifed higher-order theory (modd 5) are fairly aCl:ura:e.
For multilayered l:ylinders with It/,." :::; 0.2 and fI ~ X, the error in the minimum frequency
is less than 3.4 %. ;\ rapid degradation in ~ll:cura9 Ol:curs in l:ylinders with It/,." ;" O,l. as
the l:irl:llll1ferential wave number increases beyond 4. Modd 5 overestimates the vibration
frequencies and underestimates the total strain energy (see Figs 5 and 6). The in-plane
displacements, II and /', predicted oy this modd are fairly ~Kcurate, However, the transverse
shear stresses, 11", predicted by this model arc grossly in error. Moreover, the model docs
not predict the transverse normal stresses, 11, (see Figs 10 and 12).

(5) The glooal response l:haracteristil:s predicted oy the discrete-layer theory (model
6) arc vcry ~Iccurate, The maximuIll errors in the minimum frequency of vibration were less

hi'0 =0.05 hl'o = 0.20

1.06 1.20

1.04

1.02

1.15

1.10

(Q2/m~x.ct
'.05

Mod.1

--"1
--.. 'A

--07

--08

1.00 ~.....,:j~:=:t~~__~
o 2 4 6 8
Circumferential wave number, n

0.95 L-_.1-_-'-_-L_----'.
o 2 4 6 8
Circum'.renlial wave number, n

Fig. 7. Effect or thickness ratio. h'rn, and circumrerential wave number. n, on the accuracy or the
minimum vibration rrequencies obtained by models I. 1A. 7 and 8 (see Tahle I). Simply supported
composite cvlinders with N£. = 10. E, I Er = 15. Grrl E r = 0.5. Grrl Er = 0..ll56. V, r = O.l. I'rr = 0-I'l,

I.,." 1.1l and 1/1 I
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Table 2. Effect of composite correction factors and reanalysis procedure on the accuracy of the lowest vibration
frequencies obtained by models!. IA and 8 (simply supported composite cylinders with NL = 10. EL!Er = 15.

Uro = 1.0 and m = I)

Values of w!jw;""".
Model Model 8

Taylor Full
n ~,..ct U,hjUx 10= IA series reanalysis k, k"

(a) h,To = 0.05. n = 3
0 1.234 0 1.000 1.000 1.000 1.000 1.0 0.8015
I 0.5447 0.1950 1.001 1.000 1.000 1.000 0.7545 0.9154
2 0.2557 0.6523 1.002 1.001 1.001 1.001 0.7521 0.8649
3 0.1753 1.898 1.006 1.002 1.003 1.002 0.7556 0.8025
4 0.1938 4.910 1.014 1.003 1.005 1.003 0.7610 0.7834
5 0.2987 9.267 1.024 1.002 1.007 1.003 0.7667 0.7768
6 0.5036 13.95 1.035 1.002 1.008 1.002 0.7718 0.7740
7 0.8288 18.65 1.045 1.001 1.009 1.001 0.7762 0.7725
8 1.295 23.30 1.056 1.000 1.010 1.000 0.7799 0.7716

(b) /r,'r" = 0.20. n = 2
0 19.74 0 1.004 1.004 1.004 1.004 1.0 0.8146
I 11.77 12.17 1.030 0.999 1.004 0.999 0.7705 1.274
2 8.933 25.48 1.064 1.000 1.010 1.001 0.7692 0.8325
3 10.84 37.34 1.092 0.998 1.012 0.999 0.7703 0.7828
4 16.65 49.25 1.122 0.994 1.009 0.993 0.7720 0.7701
5 26.06 59.45 1.148 0.990 1.(XI2 0.985 0.77.'9 0.765()
6 311.88 67.23 1.lfi8 0.986 0.994 0.978 0.7760 ().7fi24
7 54.95 72.95 1.182 0.981 O.98h 0971 O.77!!4 O.7h()9
II 74.18 77.14 1.19 I 0.977 0.978 0.965 O.7!!()9 0.7599

n.,~. '" 10: x I'/r:",;,~,/Er. In model !. k, = k ll = I ..Ild in model IA. k, = k ll = O.773!. ..s computcd from thc
cylil1llric;lll>cnding condition of Chow (1971) ..nd Whilncy (1973).

than 0.6%. For cylinders with hlro ~ 0.1, the total strain energies predicted by this model
arc similar to those predicted by model 4 (sec Fig. 6). As hlro increases the accuracy of the
total strain energy predicted by this model decreases. The distributions of in-plane stresses,
transverse shear stresses, and displacements through the thickness obtained by model 6 arc
1~lirly accurate (sec Figs 9 and II). However, the model does not predict transverse normal
stresses, (Jr' Note that for NL ~ 8 the number of displacement parameters used in this
model exceeds those used in all other models.

,
..'"'"l

1.0.M .87 .88 .88 1.0 -1.0 -.5 0 .5 1.0 -1.0 -.75 -.5 -.25 0

w/lwl.... "./10.1.... "••11"••1....

0.50

0.25

o

-0.25

hlro n

0.05 3­

0.10 3--
0.20 2 .

.........

-.75 -.5 -.25 0

",11",1....

Fig. 8. Eff~'l:t of the thickness ratio. h/ro• on the distribution in the thickness direction. of displace­
ments. stresses and transverse shear strain energy density. associated with minimum vibration
frequencies. Simply supported composite cylinders with Llro = 1.0. NL = 10. ErlEr = 15.

GaiEr = 0.5. GrrlEr = 0.3356. Vl.r = 0.3. Vrr = 0.49 and", = I.
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Fig. 9. Accuracy of displaccments. stresses. and transverse shear strain energy density. associated
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(6) The accuracy of Ihe predictions of the simplified discrete-layer theory. model 7, is
comparable 10 that of the first-order shear deformation theory with the same number of
displacement paramelers. model (. This is true for both thc global as well as detailed
response characteristics.

(7) The predictor corrector approach (model X) appears to be a very ctfcctive procedure
for the accurate determination of the global. as well as the dctailed response characteristics
of cylinders. Specifically. the following four observations C;1I1 be noted:

(a) The numerical values of the corrected composite shear correction factors. k, and
k". an: fairly insensitive to their initial values. k~' and k::. uscd in the first-order shear­
deformation theory. They depend on the distributions of the transverse shear strains in the
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Filo!, 10. Accuracy of displacements. stresses. and transverse shear stram energy density. associated
with minimum frequency obtained by models 5 and 8 (sec Table I). Simply supported composite
cylinders with XL = 10. E, Er 15. C"IEr '" 0.5. Crr·Hr = 03.156. Vir = 0.3, "rT 0,49.

It r" n,:!. L r" = I ,n. m = I and II = 2.
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thickncss dircction which, in turn, arc functions of both thc lamination and gcometric
paramcters of thc cylinder.

(h) If k:1 and k,~ arc both selected to he t. the error in the glohal response quantities
obtained in the lirst (predictor) phase, for shells with Nt. = 10, II/ro ?- 0.2, and 1/ ?- 4, may
be unacceptahlc; however, the corrector phase improves these predictions suhstantially,
and results in highly accurate distributions of displacements and stresses through the
thickness (sec Figs 7. III and 12).

(c) The accuracy 01' the response quantities obtained using the predictor corrector
approach is insensitive to the initial she'lr correction 1~lctors selected. It is .lIso insensitive
to the selection or the reanalysis procedure in the correction phase. For example, when the
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Fig. 12. Accuracy of displileements. stresses. and lransverse shear slrain energy density oht:,ined hy
models 5 and 8 (sec Table I). Simply supported compositc cylinder subjected to intcrnal prcssure
{'. ={'"sin rr;cos II. NI. = 10. E'/£r = 15. G'r'Er = 0.5. Grr/£r = 0.3356. "Ir = 0.3. l'rr = 0.49.

h/r" = 0.1 and L/ro = 1.0,
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Table:; Rdatlve magnitudes of the maximum dlspl~lCements and stresses ohtaln~d

b' the three·dlmenslonal e1astll:ity model (simply supported eomposlt~~ylinders "Ith
SLo=10.Er E r 15.Lr,,=l.Oandm Ii

Free vlhratH)nal resp,HlSe

" r, = 0.05
fl =:;

I Fig. ~l

" r" 0 10
fl ,

I Fig. :.i)

.-.._-.-.- Stati.: respon,~

h r" = 0.2 Ir r" = 0,2
n·= ~ fl = I

iFtgsX-101 tFigs II and 12)

Illlm<l~ 111" ''',I ~ 0.1.)<19 o 165 02..0 o 21 ~

il'jm,,, ; H "'~,I' 0:;X6 0....... 0.5X9 0.1>0-1
la."!,,, " !fi':",n 0.171 0.115 0.129 OLQ
j".• lm" :17 "".1\ 0020 00-1.1 001\1) O.OX-I
la.lm .. !rr. :,~," 0005 {lIl! I 0010 0.119

calculated composit~ correction factors arc much different from their initial values. the
first-order Taylor series approximation (with respect to the composit~ correction factors)
provides sutliciently accurate estimates for the response 4U<lntities (see Table 2).

(d) Because of the assumed through-the-thickness linear distribution of strains in the
predictor phase. and the associated piecewise linear distribution of stresses. the stress
conditions at the top and bottom surfaces. and at layer interfaces. cannut a/l he sutis/ied

sil1lu/t(/I/('IJtt.\/.l'. The accuracy of the transverse stresses ohtained hy thc predictor corrcctor
appfllach was f\lund to hc somcwhat scnsitive to which conditions arc satisfied. Numerical
experiments have shown that good al.:l.:uracy is obtained when the stress I.:onditions at both
the top and bott\lm surfaces arc satistied, and the discontinuities in the transverse stresses
occur at \)1' ncar the middle surface. The stress discontinuities can be reduccd by using an
error distribution pro\:edure. SUdl a prol.:edun: was not used in the present study.

The aforementioned observations point to the fal.:t that accurate prediction of the
distrihution of stresses and displaL'ell1ents thfllugh-the-thil.:kness of mll1tilayered L'ylinders
n:quires the usc ofthn:e-dimensional equilibrium and constitutive relations. These equatillns
can he used in an inexpensive. postpfllcessing mode with any of the modeling appruaches
bas~d on two-dimt:nsional theories. The predictor corrector appnlach has the advantage
of starting with a simple lirst-order theory in tht: tirst phase to ohtain estimates for the
global response charactcristil.:s. and then eorrel.:ting thest: estimates hefore calculating the
displa\:ement distribution in the thidness direction.

7. POIT:"TI:\L OJ TilE PREDICTOR CORRECTOR MODEl.I:"(j :\PPRO\CII

The predictor I.:orrector approat:h appt:ars to havt: high pott:ntial for the accuralc
prediction of vibration frequen\:ies, strt:sses and deformations in multilayaed compositt:
I.:ylindcrs. The num~rical studies condul.:ted for simply supportt:d laminated orthotfllpic
cylinders demonstrated the :Kcuracy and effectiveness of this modeling approach. In par­
ti\:ular, the following two points arc worth mentioning:

( I) The prt:dictor wrrt:ctor approach can be applied. in I.:unjunction with linite c1emt:nt
Illodds. to tht: analysis of anisotropic shells with arbitrary gt:olllt:try. The calculation of the
transverse strt:sses, cOlllpositt: sht:ar I.:orrection factors. and the correction phase can he
performed on the e1emt:nt level for selel.:ted c1em~nts (in the critil.:al regions of the shell
model).

(2) Although any of the two-dimensional shear-deformation shclltheories can he used
in the first (predictor) phase of the predktor corrector approach. the first-order sht:ar­
deformation shell theory has two major advantages over other theories of: (a) only live
displacement paramt:ters arc used to describe the deformation; and (b) in the finite clement
implementation only CO continuity is required. The simplif1cd higher-order shclltheory and
the simplified discreh:-Iay~r theory, models 5 and 7, share the first advantage. but require
C I n1l1tinuity in their tinite clement implementation.
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8. CONCLUDI~G REMARKS

A studv is made of the effects of variation in the lamination and geometric parameters
of mUltilay~redcomposite cylinders on the accuracy of the static and vibrational responses
predicted by eight modeling approaches. based on two-dimensional shear-deformation
theories. The first seven modeling approaches considered are: first-order shear-deformation
theory (based on linear variation of It. l' and constant 11'. through-the-thickness); first-order
theory with linear variation of II. r and II' through-the-thickness: two higher-order theories
(based on cubic and quintic variations for It. c and II' through-the-thickness); a simplified
higher-order theory (based on cubic variations of u. l" through-the-thickness. but imposing
the transverse shear stress conditions at the top and bottom surl~lces of the cylinder);
discn:te-layer theory (with piecewise linear variation of the in-pl.me displacements in the
thickness direction): and a simplified discrete-layer theory with the continuity of transverse
stresses imposed at layer interfaces to reduce the number of generalized displacement
parameters to Ihe. The eighth model is a predictor-corrector approach based on using a
first-order shear deformation theory to predict the generalized displacements. in-plane
strains and stresses in the plate: and using the equilibrium equations and constitutive
relations l~f the three-dimensional theory of elasticity to: (a) calculate the transverse
stn:sses. strains and strain energy distribution in the different layers: and (b) provide
accurate estimates for the composite shear correction I~lctorsand adjust the transverse shear
stilTnesses. The adjusted stilTnesses an:: used. in conjunction with a reanalysis tCl:hnique. to
ontain l:orrl:l:ted estimates for the dilli.:rent response quantities. The potential of the pre­
dictor-I:orrel:tor approach fi.'f the aCl:urate determination of the response charal:teristies of
ll1ultila)l'n:d shells with complil,:ated geometry is also discussed.

Extensive numerical rcsults are presented for simply supported laminated orthotropic
circular cylinders. Two key dements distinguish the present study from previous studies
reported in the literature: (a) the standard of comparison is taken to he the exact three­
dimensional elasticity solutions: and (b) quantities compared arc not limited to gross
response dJaracteristlcs (e.g.. vihration frequenl:ies. strain energy components. average
through-the-thickness displacements and rotations). hut indude detailed. through-the­
thickness distrihutions of displacelllents. stresses and strain energy densities.

Based 011 the nUlllerical studies condul:ted. the Ii.,llowing eondusions seem to be justilicd.

( I) For most practical prohlems. the transverse shear deformation has a much more
pronoull\:ed dli.:et on the n::sponse of multilayered composite cylinders than that of trans­
verse normal strain and stress. The latter ean only become noticeable (of the order of 20t~;1

or more) li.lr statically 10;I~h::d thick cylinders and deformations with very sJlllrt wavelength
(hI'" ~ 0.2 and II ~ 8). and in the regions of highly localized 10;ldings (or loadings with
sharp variations).

(2) The accural:Y of the predictions of lirst-order shear-deformation theory is strongly
depentlcnt on the values of the composite shear correction 1~letors used. The use of the
composite shear correction factors proposed in Chow (1971) and Whitney (1973) results in
fairly accurate gross response characteristics for a wide range of lamination and geometric
parameters.

(3) The aecurate prediction of the stress and displacement distribution through-the­
thickness of Illtl!tilayered cylinders requires the usc of three-dimensional etluilibrium and
constitutive relations. These equations can be used in an inexpensive. postprocessing mode
with any of the modeling approaches based on two-dimensional theories.

H' The predictor-corrector approach appears to be a very elfective procedure for the
accurate determination of the global as well as the detailed response characteristics of
multilayered I:ylindcrs. The accuracy of the response quantities obtained in the first (pre­
dictor) phase for cylinders with a thickness-to-radius ratio of the order of 0.2 may be
unacceptable. IIowe\'er. the corrector phase improves the predictions substantially and
results in highly accurate distributions of displacements and stresses through the thick ness.

Ackllo,,-!I'flqeml'nI.t-The present research is partially supported by a l"..\SA Grant No, NAG 1-7RR and by an Air
Force Otlicc ofSdcnlilic Research Grant No. 90·1.5~. Thc authors acknowledl!c useful discussions with James H,
Starnes. Jr. of NASA and Spcnccr Wu of AFOSR. -



A. K. :--OOK t'l <1/

REFERENCES

Ahmed. N. (1966) Axisymmetric plane-strain VibratIOns clf a thick-layered orthotroplc cylindrical shell. J Acousl.
Soc. Am ..O{61. 1509·1516: see also Errata (1967) J Acousi. Soc' Am. 40{ 2). 529

Alfutov. N. A .. Zmovcv. P. A. and Popov. B. G. (1':184). Analr.Hs 0/ .\lu/li/aICf P/ales and Shells 0/ Composile
,~falerials. Izdatel'stvo Mashinostrocnie. MllSCO.... [in Russian].

Ambartsumian. S. A. (1966 I. Some current aspects of the theory of anISotropic layered shells. I n .~pplied .\lechanics
Suners (Edited by H. N. Abramson. H. Liebo.... itz.1. M. Crowky and S.luhasz). pp. 301314 Spartan Books.
Washington. DC.

Ambartsumian. S. A. (1968). SpeCific featun:s of the theory of shells made of currently available matenals. f::l'e.\Ila
Akad. Nallk Amlianskoi SSR. Mekhanika 2114), 319 [in Russian]

Ambartsumian. S. A. (1974). General Theory of Anisotropic Shells. Izdatd'stvo Nauka. ~losco.... [in Russian].
Barbero. E. 1.• Reddy. J. N. and Teply. J. L. (1990) A general two-dimensional theory of laminated cylindrical

shells. AfAA J 28(3).54+-553.
Bert. C. W. (1975). Analysis of shells. In Composite .~falt'rials-Slrueluwl Design and Anulrsis (Edited by C. C

Chamisl. Part I. Vol. 7. pp. 207-258. Academic Press. New York.
Bert. C. W. and Egle. D. M. (1969). Dynamics of composite. sandWICh. and stilfened shell-type structures.

J Spucecra/; Rock,,'s 6(\ 2). I H5··1361
Bert. C. W. and Francis. P. H. N. (1974). Composite material mechanics: structural mechaniCS. AfAA J 12(9).

1173-1186.
Bert. C. W. ;Ind Kumar. M. (1982). VibratIOn of cylmdn.:al shdls <11' bimodulus composite materials. J. SOl/nd

fihr. HI( 1).107 121.
Bhimaraddi. A. (1985). Dynamic response of l)rthotwpic. homogenelHls and laminated cylindrical shells A IA A J

23(11).183411'37
Boresi. 1\ P. (191)5). Stress problem llf contlgU<1Us c'''l.xlal cm;uLir cylll1(ic'rs suhJected tll nOnh\Hlwgene\lus

1l'lIlper,ltun: distrihlltlon and to pres'ure. ,vile. SIn/cr. f.·II'lflll I. lSI> I'll>.
Ch,mdra,hekh<ll'l. K. and (lopalakrishn'm. f' (I'IX2) [bsticity soilltion ror a multll,lycred transVLT'cly 1'l>trOI'''

clrcubr cylindric'al shdl.l A/If'/. MI'CIt. "". lOX 114
Chou. F.-II. and Aehenhach. J. D. ( 1972). Three·dIn1enSional vlhrallollS ,,1' orthot nlpic cylmders .I. f;1l<11I(1 ,\fl'Ch.

[lil .. ..ISCE '/ll( [\14). X1.1 X22
Chow. 1'. S. (1\171). On t!ll' pr"pa[:ation of IkxlILil w<lves in ;111 "rtholr"p" LlInlnated pble ,Ind its rl'sponS( to

an Impulsive load. J C""'//I". Mal"'. 5. 301> .I 1'1
D,Scuiva. M. (1\/S7). An improved shear·def"rll1<1llon theory ror nHllkr<ltdy t!l"k 111 lilt 11<1 yerc'd anisotrop" shell,

<lnd pbtes . .I. .. I/,/,/.\I,·clt. 5-1. :'S\I :"11,
Don~. S. B. <lnd Tso. F. K. W. (1972). On a bminated orth"trol'l( shell thenry including transverse s!lear

deformation . .I. A/,f'1. Meclt. 39, 1091 10'1(,.
Eason. (i. (1\1(,3). On the vlhr<ltiou of <lnlSotroplc cylinders <lnd sp!l(f''' ...1/'/'/. S"oll. Nl'S. S,·e . .. I 12( I). XI X:'.
(jrigolyuk. I'. I. and Kogan. I' A. (1\172) SLlte·"fthe·<lrt of the theory or multll<lyer shc·lIs. I'nklwl. .\lck H({,l.

.I 17 fin Russi;lI1l. [English tLlnsLilion in S"" . ..I/'I'/. ,lin It H({,!. .flllv 1974. :'8.1 :''1'1·
CingolYlIk. I: I. <lIHI KlIlikov. C; M. (1'ISS) Ciener,1I direction "rdevdoI'IIlC'nl "I' the l!le"rv or 11I1I11IIayered

shdls. Mck. "':"",/,. '\/at. 24(2). 2X7 2\IX [Ill RU""lnl. [En[:llSh trallslation In .\le,IL (''''''I,,,·,,,,,I/al'''. 24(2).
211 2411

Cingorenko. Ya. M. and Vasllenko. A. T. (I 9S I). Theory or ,hdls With vanahlc '1IIl'ness . .I/I,th"ds oj' Caini/al/iltl
o/Sltells" I,datd'stvo Naukova DUll1ka. Kiev [In RUSSian!.

Grigorenko, Y,1. M.. Vasilenko. A. T. and I'ankratova. N. D. (1\174) Computationllr the stressed ,tate nr thick·
v.~alled inlwmogenelllls anisotropic shells. I'riklwl. Mck. 1U(5). XII 9.1 [in Russianl: [English transbtion in .'1"1'
AI'f'I. Meclt. IU(S). 523 528!.

Grignrenkll. Ya. M . Bespalova. E. I. and Kllina. T. '" II 'IX-l). An;dy,is llft!le frequency char,tderistl" orbminar
cylindrical shells lin the hasis or dil1'crent thellfles. l'"kl",l. .I/ck. 211( 12). 52 58 lin Russian].[English tr;l115b tl\1I1
in So, . ..If'I'/. .\lI'ch 211( 12).11.12 11371

(;ngorenkll. Ya. M .. Va,lIenkll. A. T, and Gllluh, (j I' II \IS7) Sial/n oj' .·IIIf.wlrop/c SI/I'/I.I' leillt FlIllle SI/I'ur

Rlilidi/l·. Nauk"'a. Dumb. Kiev [in Russian!.
I Lihlp. L. \1. (19(,5). A reVIew llr re<.:ent work on ll1ultllayered ,trllctures. fill . .I. .11(', It. SCI 7.5S'I 5'1.;
Kapania. R. K. (19X'I). A review of the analy,is oflaminated shells. J. I're.l'.\/I"· l't'ssel Tec!/lwl.. AS:\IE III. xx

90
Karlsson. T. and Ball. R. E. (1'166). Exact pbne stram vihrations or eomposne twll\,w cylinder, c\lInpanson

With apprmllnate lheories. ,., f.·I,., .I. 4( I). 17<> 181
Khd"r. ,\. A. I.lhreS(u. I.. and F'rcderick. D. (198\1). A ,hear deformahle theory of laminated compoSite shallow

,hell-type panels and their response analysi,. II: ,tall( respollse . .. Iera .\It',-It. 77. I 12.
Kovank. V. (19S5). Strt'sst's ill La.\',,(ed Shell, 0/ Rallllllillll. Prague (EnglISh tr'lIlslation puhlished hy E1se,ier.

r-;ew York. I\IS'II.
LihreS(;u. L. (1975). 1:'!11.Hosialin atltl Killelin II/Allisot"'pic alld I/"''''''(/''/I('III/s Shell- Trpl' S'ructures. :--oordholf

International. Leyden. The Netherlands.
Lihrescu. 1... Khdeir. A. A. and Frederick. D. (19H'I). A shear deformahle theory of lamlila led compoSite ,hallow

shell.type panels and their response analysis. I: rree vibration and hu<.:kling . .-Ida .1/('ch. 7fl. I .1.1.
M i,,,vec. A. P. and Kempner. 1. ( 1970). Appro.ximate ela,ticity ,olllti\ln ror orthotropte cyllllder under hydrostatic

pressure and hand loads. J. AI'pl. Merh. 37.101 108.
Narusberg. V. L. and Pazhe. L. A. (19H2). Elfeet of kinematic heterogeneity on the criti<.:al st;lhllity parameters

of cylindrical laminar shells. ,\f,·k. Komp. Mal. 111(2). 271 27H [in Russianl: [English translation In M('ch.
Compos. Mala. 111(2). 11'8-·194J.

Noor. A. K. 'lnd Peters. J M (I 'IX'Ia). Str",. ,ihratl<1n and huck lIng or multilayered cylinders. J Stml'r. 1:'/111"'1.

ASCEI15(1).698X.
Noor. A. K. and Peters. J. ~1. (1'I8'1h). A f'0sl"nll" estimates ror shear eorreetilHl factors inmultl!ayercd composite

cylinders .I. £/11111" ,l/ceh.... ISCE 115(1)1. 1225 1244.



Computational modds for multilayer~-d composite cylinders 1285

Noor, A. K. and Rant!, P. L. {1974). Thr~·dimensional solutions of laminated cylinders. Camp. Meth. Appl.
\f,'ch. £nQnQ 3. 319-~U4.

Pelekh. B. L. (1975). Certain problems in developing a theory and design methods for anisotropic shells and plates
with finite stiffness in shear-a survey. Mek. Pol. II (2). 269-284 [in Russian!; [English translation in Poly.
Me"h. 11m. 229-241J.

Pelekh. B. L. and Lazko. V. A. {19lC). Lin""ed Anisotropic Pilites and Shells with Stress Concentration. Naukova,
Dumka, Kiev [in RussianJ.

Rasskawv. A. 0 .• Sokolovskaia. I. l. and Shul'ga. N. A. (1986). Theon' and Analysis of Layered Orthotropic
Plates lind Shells. Izdatel'stvo Obedinenia Vishcha Shkola. Kiev [in RussianJ.

Reddy, J. N. and Liu. C. F. (1985). A higher·order shear deformation theory of laminated elastic shells. Int. J.
EnQnq. Sci. 23(3), 319-330.

Roy.' A'. K. and Tsai. S. W. (19881. Design of thick composite cylinders, J. Pre.'S. Vess. Techno!.. AS.\f£ 110.
255-:!62.

Shtayerman. l. Ya. (1924). Theory of symmetrical deformation of anisotropic elastic shells, I:restia [(iel'.~k.

Politekh. i SeI.·[(Jw:. Inst. 1.54--72 [in RussianJ,
Srinivas. S. (1974). Andlrsis o(Laminated, Compo.fil", Circl/lar Cylindrical Shells '.-itf! General Boundary Conditions.

NASA TR·R·412.
Teters. G, A. (1977). Plates and shells fabricated of polymeric and composite materials-review. Mek, Pol. 13(3).

486-493 [in RussianJ; [English translation in Poly. Mech. 13(3). 1978. 415-421 J.
Ul'yashina. A. N. (1977). Equations in the engineering theory of orthotropic shells with both tangential and

normal strain. ,I,.{ek. Pol. 13(2).270-276; [English translation in Poly. Mech. 13(2). 1977. 245-250J.
Vanin, G. A. and Semeniuk. N. P. ( 1981). St</hilitl· ,,{Shells ,,{ComplHite .\{alerials .rith Imper!i'ctions. Izdatel'stvo

Naukova Dumb. Kiev (in Russianl.
Vasitenko. A. T. and Golub. G. P. (198.1). Stressed state of anisotropic shells of revolution with transverse shear.

Priklad. Ml'k. 19(9),21-26; [English translation in So/'. Appl..\(edr. 19(9). 1984, 759-76.1).
Whitney. J. M. (1l>7.1). Shear wrrel:tion fad,'rs for orthotropil: laminates under statil: load. J. tlppl. Meeh. 40•

.1()2 .1()4.
Whitney. 1. M. and Sun. C. T. (1974). i\ rdincd tlwory for laminated anisotropic. I:ylindrical shells. J. Appl.

,\fcclt. 41(2). 471 476.

APPENDIX A: FUNDAMENTAL EQUATIONS OF TilE TWO-DIMENSIONAL
SIIFAR,DEFOR:'wIATION TIIEORIES USED IN TilE PRESENT STUDY

The fundamental el.ju~ltionsof the higher-order shear dcli.>nnation thenries uscd in the present study as given
in this t\ppcndi.\.

SIr"ill di.ll'll/cefl/('1I1 rclllliOlI.l'
The strain componcnts can oe expressed in terms of the displacement parameters of e4ns (2) as follows:

J.

E. : L /1.11"'«(,)'
j ..... n

1 [ J,. J. ]
I:" =; L /\I."J'(x .)' + L ",("(x ,)'

J .... II J-O

J.

E, = L jw'''(xJ)' ,
I_II

where

and r =r,,(1 + XI).
r"

(All

CIIII.>titlllil'l· rdllti"",,
The stress strain relations for a typi~'al lll'thotropic layer. k. of the cylinder arc given oy:

". ." {"Il (' I ~ C t ,
,.,

i: T '"
"" I'll (" ~, fo'l

(f, ell E'

(f", ('.u
(A2)

j'rll

(f" Cq j'n

(1 ,IJ Chh 1\11

where 1'". C'l' ...• c•• arc the material stiffness eoellicients of the kth layer. The different stress resultants arc
ohtained through piecewise integration in the thickness of eqns (A2).
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Strain and kinetic energies
The total strain energy of the cylinder. ['. can be decomposed mto three components as follows:

where U.... C",. and C,n are the bending-extensional. transverse shear. and transverse normal energies. respectively.
The expressions of C... Ch' and C'n in terms of th.: stress and stram compon.:nts are given by.

(A4)

where ,"'L is the total number of layers.
The expression for the total kinetic energy of the cylinder. K. IS given by:

(A5)

where I', = e/I'1.

Fint·ord", .,hellr·d"/("matio,, theon'
The first·order shear·deformation theory used herein is based on the following assumptions (Ambartsumian.

1974. Dong and Tso. 1912; Noor and Peters. 1'18%):

(allinear through-the·thickness variation of thc displacements II and ,.;
(n) neglecting the transverse normal strain. ".; and
(c) generalized plane-stress state in each layer

The displacement field is completely descrined by the five parameters II"". {.IO'. 11,1
0

,. 11'" = I/J~. ", II = tb,\' wbere
,p': and ,p,': are average through-the-thickness rotations, and the fundamental e4uations of the theory arc given
in Dllllg and T", (1912l amI NIHlr and Peters (11)89b).

Correction factors are used to adjust the transverse shear stiiTnesses and match the response predictcd ny
the two-dllncnsion;l! theory with that of the three-dimensional ebstlCity theory. The range of validity of the first­
onkr shl'ar·deformation theory is strongly dcpendent on the factms u.sed in adjusting the transverse shear
stilTnl'sses of the cylinder.

Simpli/ied hi"lwr·ordcr theor\'
In the simphlied higher-order theory used hercin, assumption la) of thc firSl-l1nkr shear deformation thcory

's rcplaced ny that of a cunic variation, through-thc-thickness. for the in-plane displacements II and ". In order
to retain the same numner of dispbccment parameters as in thc first-order theory. the transverse shear strcss (and
strain) conditions are imposed at the top and hlll!om surfaces of the cylill<kr (see, for exampk. Hhlln/II'add,
1985; KhJeiretal.. 1989; Librescuetal.,19X9; RcJdyand Liu,I985l


