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Abstract—A study is made of the effects of variation in the lamination and geometric parameters
of multilayered composite cylinders on the accuracy of the static and vibrational responses predicted
by cight modeling approaches. based on two-dimensional shear-deformation shell theories. The
standard of comparison is taken to be the exacr three-dimensional elasticity solutions, and the
quantitics compared include both the gross response characteristics (e.g. vibration frequencies, strain
energy components, average through-the-thickness displacements and rotations): and detailed.
through-the-thickness, distributions of displacements, stresses and strain energy densities. Based on
the numerical studies conducted, a predictor -corrector approach, used in conjunction with the first-
order shear-deformation theory (with five displacement parameters in the predictor phase}. appears
to be the most effective among the eight modeling approaches considered. For multilayered ortho-
tropic cylinders the response quantitics obtained by the predictor -corrector approach are shown to
be in close agreement with the exact three-dimensional elasticity solutions for a wide range of
lamination and geometric parameters. The potential of this approach for predicting the response
of multilayered shells with complicated geometry is also discussed.

[. INTRODUCTION

Since the first reported investigation of anisotropic shells of revolution (Shtayerman, 1924),
considerable progress has been made in the analysis of laminated and anisotropic shells,
Reviews of the many contributions on this subject are given in a number of survey papers
(Ambartsumian, 1966, 1968 ; Bert and Egle, 1969 Bert and Francis, 1974 Bert, 1975;
Grigolyuk and Kogan, 1972; Grigolyuk and Kulikov, 1988 ; Habip, 1965; Kapania, 1989 ;
Pelekh, 1975; Teters, 1977) and monographs (sce, for example, Alfutov ef al., 1984,
Ambartsumian, 1974 ; Grigorenko and Vasilenko, 1981 ; Grigorenko et al., 1987 ; Kovarik,
1985; Librescu, 1975; Pelekh and Lazko, 1982; Rasskazov er «ol, 1986; Vanin and
Semeniuk, 1987).

Most of the carly publications on laminated cylindrical shells, and laminated shells in
general, were limited to predicting the gross response characteristics {vibration frequencies,
buckling loads, averuge through-the-thickness displacements and rotations) of thin shells.
The classical taminated shell theory, incorporating the Kirchhoff-Love hypotheses of
straight inextensional normals for the entire shell package (see Ambartsumian, 1966, 1974
Bert, 1975), is adequatce for this purpose. The expanded use of fibrous composite materials
in aircraft, automotive, shipbuilding and other industries has stimulated interest in the
accurate prediction of the detailed response and failure characteristics of laminated aniso-
tropic shells. Several modeling approaches have been proposed which take account of the
relatively low ratio of the transverse shear modulus to the in-plane modulus in most of the
advanced composites in use to date. Some of these modeling approaches are extensions of
similar approaches used for isotropic shells, and include: (1) three-dimensional and quasi-
three-dimensional clasticity models (Ahmed, 1966 Boresi, 1965; Chandrashekhara and
Gopalakrishnan, 1982 Chou and Achenbach, 1972 Eason. 1963: Grigorenko and
Vasilenko, 1981 ; Grigorenko et al., 1984 ; Karlsson and Ball, 1966 : Misovec and Kempner,
1970 ; Noor and Rarig, 1974 ; Noor and Peters, 1989a ; Roy and Tsai, 1988 ; Srinivas, 1974);
(2) first-order shear-deformation shell theories based on lincar displacement and/or strain
variation through the entire shell thickness (Bert and Kumar, 1982 ; Dong and Tso, 1972;
Vasilenko and Golub, 1983); and (3) higher-order shear-deformation shell theories based
on nonlinear (or piecewise linear) variation of displacements and/or stresses through the
shell thickness (Barbero et al., 1990 ; Bhimaraddi, 1985; Khdeir et al., 1989; Librescu et
al., 1989 ; Narusberg and Pazhe, 1982 ; Reddy and Liu, 1985 ; Whitney and Sun, 1974).
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In quasi-three-dimensional models simplifying assumptions are made regarding the
stress (or strain) state in the shell {or in the individual layers). but no a priori assumptions
are made about the distribution of the different response characteristics in the thickness
direction. The use of both three-dimensional and quasi-three-dimensional models for pre-
dicting the response characteristics of multilayered cylinders. subjected to complicated
loads. 1s computationally expensive, and therefore is not feasible for practical problems.
Experience with two-dimensional shear-deformation theories has shown them to be in-
adequate for the accurate prediction of transverse stresses and deformations. This is par-
ticularly true when first-order theories {in which the transverse shear strains are assumed
to be constant within each layer (Noor and Peters (1989b)] are used for analyzing medium-
thick and thick cylinders.

A simple approach for the accurate evaluation of transverse stresses in composite
cylinders is to use two-dimensional shear-deformation shell theory for calculating the in-
plane stresses, and then apply the three-dimensional equilibrium equations to determine
the transverse stresses. An improvement of this approach was proposed (Noor and Peters,
1989b) in which better estimates were predicted for the transverse shear stiffnesses and then
used to correct the gross response characteristics.

Most of the literature on the accurate evaluation of detailed response charactertstics
of composite cylinders is limited to laminated cylinders with few layers which are rarely used
in practice. The establishment of reliable and efficient modeling techniques for simulating the
response of multilayered composite cylinders remains a challenging task and is the focus
of the present study. Specifically, the objective of this paper is to assess the accuracy of a
number of computational models, based on two-dimensional shear deformation theories,
for multilayered composite cylinders. The composite eylinders considered herein consist of
a number of perfectly bonded luyers. The individual layers of the cylinder are assumed to
be homogencous and orthotropic. The sign convention for the different displacement and
stress components are shown in Fig. 1

The computational models considered in this study can be divided into three categories :
global approximation madels, discrete-layer models, and a predictor corrector approach.
The three categories are deseribed subsequently. Extensive numerical results are presented
showing the effects of the different lamination and geometric parameters of the composite
cylinder on the accuracy of the lincar stress and free vibration responses obtained by the
different models.

3. GLOBAL APPROXIMATION MODELS
Figure | shows the geometric characteristics of the multiluyered cylinder as follows:
L is length of the cylinder; ry is radius of the middle surface: and /ris the totul thickness
of the cylinder. The dimensionless coordinates &, { are introduced, where:

. X
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2.1, Kinematic assumptions
The two-dimensional shear-deformation shell theorics considered herein are based on
the following displacement expansions in the thickness coordinate:
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Fig. 1. Characteristics of laminated orthotropic cylinder and sign convention for stresses and
displucements : (a) three-dimensional clasticity model ; and (b) mode! | {(based on first-order shear
deformation theory).

J,

W= Z wi(x;) (2)

120

where u, v, w are the displacement components in the x, §, and r coordinate directions,
respectively. The displacement parameters o', ¢ and w'? are functions of x and 8 only,
Ineqgns (2), and henceforth, a superscript between parentheses does not refer to an exponent.
The expressions of the strain components in terms of the displacement parameters are given
in Appendix AL

2.2, Displacement expansions

For asymmetric response, cach of the displacement parameters in eqns (2) is expanded
in a double Fourier series in the &- and O-directions such that the simply supported boundary
conditions along the curved edges are satisfied. The following expansions are used :

w)n u) cos mné cos nf

ve =3 Y el sinmné sinnl ;. 3)
s m=ln=0 A i = <

W wi) sin mné cos nf

The external surface loads are also expanded in double Fourier series similar to the
displacement components in their respective directions. For free vibration problems the
right-hand sides of eqns (3) are multiplied by e, where w is the frequency of vibration of
the cylinder and 1 is time. Note that the displacement expansions, eqns (3), provide exact
representations for the stress and free vibration responses of orthotropic cylinders.

SAS 27:10-¢



1272 ALK NooRr ef ul.

- Gaverning equations

The governing displacement equations of the cylinder are obtained by evaluating the
potential and kinetic energies of the shell in terms of the displucement parameters {using
eqns (AL=(A3). Appendix Al and applying Hamilton's principle (or. for static loading. the
principle of minimum potential energy). Exact integration is performed in the thickness
direction. For simply supported orthotropic cylinders the governing equations uncouple in
harmonics. For each pair of harmonics, m and n, the governing displacement equations can
be written in the following compact torm :

- { - : -
{A}mn i ‘\ :nm = : P:'mu + (’Jrrm{‘i[} ; ‘\ ;mn {4)
where | X'}, is the vector of unknown displacement parameters, ). /) and w'/): {K]n
and [M/] are the stiffness and mass matrices of the evlinder: (P, is the vector of external
loading. For static loading problems «,,, = 0, and for free vibration problems | £}, = 0.

X DISCRETE-LAYER MODELS

The discrete-layer theories considered herein are based on the following piccewise
lincar displacement approximations in the thickness coordinate (see, for example. Barbero
et al., 1990):

4
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where (k1) are piccewise lincar functions in v, given by ;

V= heo
k = s =k
('él{ ’:) if; "‘;Ik 1 !
=1, 1 # k.

For tree vibration problems the right-hand sides of egns (5 are multiplied by ¢, The total
number of displacement parameters equals 2N L + 3, where N1 is the total number of layers
in the cylinder. The strain displacement relations in each laver are taken to be the same as
those of the first-order shear deformation theory (see Dong and Tso. 1972 Noor and
Peters, 1989b). A simplified discrete layer model is obtained by imposing the continuity of
the transverse shear stresses o, and a,,, at the interfaces between layers. The number of
displacement parameters is then reduced to five (as in the first-order shear deformation
shell theory -~see, for example, DiScuiva, 1987).

4. PREDICTOR CORRECTOR APPROACH

It has long been recognized that the range of vahdity of the first-order shear-
deformation shell theory is strongly dependent on the factors used in adjusting the transverse
shear stilfnesses of the evlinder. Several approaches have been proposed for caleulating the
composite shear correction factors for different laminates. Most of these approaches are
based on matching certain gross response characteristics, as predicted by the first-order
theory, with the corresponding characteristics of the three-dimensional elasticity theory.
Among the gross response characteristics are transverse shear strain energy. natural fre-
quency associated with the thickness shear vibration mode, and velocity of propagation of
a flexural wave (see, for example, Chow, 1971 : Whitney, 1973). However, all the shear
corrcction factors proposed in the cited references are calculated @ priori and are therefore
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functions of the lamination parameters only. They do not account for the differences in the
distribution of the transverse shear strains in the thickness direction resulting from different
loading conditions. As an attempt to incorporate the actual distribution of the transverse
shear strains in the thickness direction of the cylinder. in calculating the transverse shear
stiffnesses. a predictor-corrector approach was proposed in Noor and Peters (1989b) for
the a posteriori determination of accurate shear correction factors and for adjusting the
transverse shear stiffnesses of the multilayered cylinder. The approach is highlighted herein.

The predictor phase consists of using a first-order shear-deformation theory (see
Appendix A) to calculate the initial estimates for the gross response characteristics of the
cylinder (vibration frequencies, average through-the-thickness displacements and rotations),
as well as the in-plane stresses, Then, three-dimensional equilibrium equations and consti-
tutive relations are used to calculate: (a) transverse shear and transverse normal stresses
and strains ; (b) through-the-thickness strain energy density distributions ; and (c) accurate
a posteriori estimates for the composite shear correction factors. The estimates of the
composite shear correction factors are obtained by matching the integral of the transverse
shear strain energy in the thickness direction with that obtained from the first-order theory
{(see Noor and Peters. 1989b). These composite correction fuctors are used to adjust the
transverse shear stiffnesses of the cylinder. The corrector phase consists of using the adjusted
transverse shear stiffnesses, tn conjunction with a reanalysis procedure. to obtain better
estimates for the gross response characteristics, as well as for the distributions of dis-
placements and in-plane stresses in the thickness direction. The effectiveness of this two-
phase procedure is demonstrated in the section on numcrical studies.

5. THREE-DIMENSIONAL MODELS

In order to assess the accuracy of the predictions of the different two-dimensional
models, exact three-dimensional clasticity solutions are obtained for multitayered composite
cylinders. The cylinders are assumed to be orthotropic and are simply supported along the
curved edges,

Each of the displacement and stress components is expanded in a double-Fourier series
in the ¢- and O-directions such that the boundary conditions along the curved edges are
satisfied. The governing cquations of the cylinder are thereby reduced to simultuncous
ordinary differential equations which uncouple in harmonics. For each pair of hirmonics,
a Frobentus-type method is applied for the solution of the ordinary differential equations.
The method is deseribed in detail in Srinivas (1974).

6. NUMERICAL STUDIES

The accuracy of the stress and vibrational responses of multilayered cylinders predicted
by different two-dimensional models is strongly dependent on the significance of the trans-
verse shear deformations which, in turn, depends on a number of parameters including :

(a) lamination parameters (namely, number of layers, stacking sequence, degree of
orthotropy, and fiber orientation of the different layers):

(b) geometric parameters (¢.g., thickness-to-radius and length-to-radius ratios) ;

(¢) type and rate of variation of external loading (c.g., longitudinal and circumferential
wave numbers) ; and

(d) boundary (or support) conditions.

Due to the large number of thesc paramcters and the fact that closed form (or analytic)
solutions are only obtainable for cylinders with simple geometrics (c.g.. circular profile and
constantstiflness). loading and boundary conditions. it is impractical to present quantitative
results of a general nature. Several numerical studies have been made of the accuracy of
the static and free vibrational responses predicted by different two-dimensional models (sce.
for example, Grigorenko and Vasilenko, 1981 ; Khdeir er al., 1989 ; Librescu ef al.. 1989).
However, most of these studies were for laminated cylinders with a small number of layers.
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Herein. the results of parametric studies for multilayered composite cylinders are
presented. These studies were conducted to provide some insight into the effects of variation
in the lamination and geometric parameters of multilayered composite cylinders on the
accuracy of the response characteristics predicted by eight different modeling approaches
based on two-dimensional shear-deformation laminated shell theories. The modeling
approaches considered are listed in Table 1, and will henceforth be referred 10 as models
1-8.

The composite cylinders considered in the present study are simply supported laminated
circular cylinders. The fibers of the different layers alternate between the circumferential
and longitudinal directions. with the fibers of the top layer running in the circumferential
direction. The total thickness of the circumferential and longitudinal lavers in each shell
was the same. The material characteristics of the individual lavers were taken to be those
typical of high-modulus fibrous composites. namely :

G r/Er =035 Gr/E=03356, v, =03 v =049

where subscript L refers to direction of fibers and subscript T refers to the transverse
direction ; v, is the major Poisson’s ratio. For static stress analysis problems. the cylinders
were subjected to internal normal loading of the form: p, = p,sin ncosnd: for free
vibration problems, only the lowest frequencics for each pair of m. # and the associated
mode shapes and modal stresses were considered. For cach problem. the solutions obtained
by the aforenientioned modeling approaches were compared with exact three-dimensional
clasticity solutions.

Six parameters were varied, namely, the number of layers, N2 the degree of orthotropy
of the individual layers, £,/ F . the thickness-to-radius ratio, ft/ry 2 the length-to-radius ratio
of the cylinder. L/r,; the tongitudinal and circumiferential wave numbers, mrand a. The

Table I Modeling approuches used i the numerical studies

Through-the-thickness Constriunt Total number

Model displucement conditions on ol displacement
no. Deseription assumuplions stresses parsmeters
1. 1A First-order shear- linear u, ¢ a, =} 5
deformation theory constant w
2 First-order theory with lincar », ¢ and w none 6
trinsverse normal
stresses and stramns
inctuded
3 Lo-Chrnistensen cubic w, v nong 11
Wu type theory quadratic w
4 Higher-order shear quintic . e and w none 18
deformation theory
5 Simplified higher-order cubic w, v a, = ) throughout 5
theory constant w and o, and
g, = 0at
top and bottom
surfaces
6 Drscrete Juyer theory piccewise lineur 7, = 0 throughouwt INL+3
constant w (through-the
thickness)
7 Simplitied discrete layer piecewise inear a, ¢ a, =4 3
theory constant w (through-the-  continuity of o, and
thickness) a,, at layer interfaces
8§ Predictor corrector Predictor phase Predictor phase 5
approach {sce Noor and lincur u, ¢ g, =1
Peters, 1989h) constant w
Corrector phase Corrector phase

matching displacements

o

In model |, &k, = &, = 1, and in model 1A, they are computed from the cvlindrical bending condition of Chow
(1971) and Whitney (1973).
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number of layers was varied between 2 and 20, E,/E between 3 and 30, 4/r, between 0.01
and 0.3, L/r, between 0.5 and 5.0, m between | and 3, and n betweeen 0 and 8. The
assessment of the accuracy of the eight modeling approaches listed in Table 1 included both
global response characteristics (vibration frequencies and strain energy components), as
well as detailed stress and displacement distributions in the thickness direction.

The effects of variation in the six parameters NL, E;/E;. hury. Lir,. mand n on the
minimum vibration frequencies, and the energy components U,,. L, and U,, (see Appendix
A). obtained by the three-dimensional model. are depicted in Figs 2. 3 and 4. As can be
seen from Figs 3 and 4. the transverse shear strain energy ratio, U,/U, increases with the
increase in NL. E,/E,, h/ry and n. Even for cylinders with A/r, = 0.1, U,/U can exceed 0.2
(for NL =10, E,/E;=15. Liry = 1, and n > 4). The increase in [7,/U is associated with
a decrease in the ratio U,./U. On the other hand, for all the vibruation problems considered,
U,/U was found to be very small (less than 1%). For statically loaded cylinders U,/ U
approaches 37% for thick multilayered cylinders with h/r, =03, Lir,= 1. E/E; = 185,
n = 8. and NL 2 10 (Fig. 4).

An indication of the accuracy of the minimum vibration frequencies and the total
strain energy predicted by the models listed in Table | is given in Figs 5. 6 and 7, and Table
2. Figure 8 shows the effect of A/r, on the distribution of displacements, stresses, and
transverse shear strain energy density in the thickness direction, obtained by the three-
dimensional elasticity model. As can be seen from Fig. 8, the distribution of g,, and U, is
fatrly insensitive to variations in fi/r,. An indication of the accuracy of displacement, stress,

tirg = 0.1 m mat NL
Urgat0 T hirg = 0.1 2
NL = 10 2 ° Ur, 210 4 o
3 —a 10 a
0.50 (~ 0.4 - 20 °
0.45 _\__/ 0.9
ad
282 . 2p2
pth? ) 2o \_/ eolh? o,
Ev Ey
0.15 6.1 b~
1 | ) ) { ! : |
0 2 4 [] 8 0 2 4 8 8
Circumterential wave number, n Circumioerential wave number, n
L7
n
0.01 —mu 0 °
m=1 0.05 ~—a m=t Y —
Ly, =10 .10 ° hirg =0.1 2 a
NL =10 0.20 ——wm + NL =10 3 z
0.30 ——o a4 o
150
1.25
1.00
2H2
%—‘r 0.75
0.50
0.25
- 0
0 2 4 ] 8 05 1625 275 3875 50
Circumferential wave number, n Urg

Fig. 2. Effect ofiami{mtion and geometric parameters on minimum frequencies of vibration predicted
by the three-dimensional elasticity model. Simply supported composite cylinders with E, /£, = 15,
GrriEr=0.5,Grr/Er = 0.3356. v,r = 0.3 and v, = 0.49.
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E/Ey —— Upe/U NL
3 ~—— Usn/U 2.
15 o Um‘;u 4 o
30 - 10 &
1.00
0.75
Strain hirg = 0.1
energy 0.50 o w
ratio Uro =10
NL = 10
0.25}- .
!
0 2 4 3 8 Q 2 4 6 8
Circumferential wave number, n  Circumferential wave number, n
h: £ n
0.01 o 0 o
0.05 & L
Urg = 1.0 0.10 o hirg = 0.1 2 a
NL = 10 020 NL =10 3 °
ELIET =15 030 o E /Ey =15 4 ©
1.00
0.75
Strain
energy  0.50
ratio

0.25

0 2 4 6 8 035 18625 275 3875 5¢0
Circumferential wave number, n Lirg
Fig. 3. Effect of lamination and geometric parameters on strain energy components, assoctated with
minimuam vibration frequencies obtained by three-dimensional elasticity model. Simply supported
compuosite eylinders with G, 8 = 0.5, G £, = 13356, v, = 03 v, = 049 and m = 1,

and transverse shear strain energy distributions predicted by models 3 8 for multiluyered
eylinders is given in Figs 9 and 10 Tor the free vibration case, and in Figs 11 and 12 for the
static loading case. Each of the response quantities in Figs 8 12 is normalized by its
maximum absolute value, obtiined by the three-dimensional elusticity model. An indication
of the relutive magnitudes of the different displacement and stress components shown
in Figs 8 12 provided by the ratios of therr maximum values given in Table 3. An examination
of the numerical results reveals the following.

(1) As expected, the accuracy of the first-order shear-deformation theory (model 1)
decreases as /ey and noinerease (see Table 2 and Figs 5-7). The range of validity of the
first-order theory is strongly dependent on the values of the composite shear correction
factors used, k, and 4,.. For free vibration problems when &, and &, were sclected to be 1,
the error in the minimum frequency for cylinders with f/r; = 005, Liry = [ and n =8 13
2.8% . As Ii/r, increases to 0.2, the error increases to 9.2% . When &, and A, were computed
from the cyvlindrical bending condition of Chow (1971) and Whitney (1973). the cor-
responding crrors were less than 0.01%6 and 1.2% (sce Table 2).

{2y Despite the larger number of displacemients of model 2, its predictions are generally
less accurate than those of model T (see Figs 5 and 6). This is attributed to the assumption
of constant transverse normal strain. and piccewise constant transverse normal stresses,
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E/Ey —— Upe/U NL
34 —— Us/U 2
15 0o | | Uin/U 4 o
30 - 10 &
1.00 ¢
0.75
Strain
energy 0.50
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0.25
0 2 4 6 8
Circumferential wave number, n  Circumferential wave number, n
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001 « 0o
0.05 a 1 .
ey =10 0.10 o© hrg = 0.1 28
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E{/Er =15 030 © E /Ey =15 4 °
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0.75
Strain
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025

B T E T TS i oy
0 2 4 6 8 05 1625 275 3875 5.0
Circumferentlal wave number, n Lirg

Fig. 4. Effect of lamination and geometric parameters on strain energy components. Simply sup-
ported compusite cylinders subjected to internal pressure p, = p,sin i cosnl. G, /E, = 0.5,
G Er=03356,v,, =03, v, , =049 and m = |

hirg = 0.05 hirg = 0.20
Model
1.10 1.25 —
[ |
1.08 120 - °2
115 - °3
1.06 2 a4
cnz/m':'"c, mzlm."c, 1.10 o5
1.04
1.05 +— o 6
o8
o 1.00 \.\ﬁ
1.00 4 0.95 . 1 L
0 2 4 6 8 0 2 4 6 8
Circumierential wave number, n Circumferential wave number, n

Fig. 5. Effect of thickness ratio, A/r,, and circumferential wave number, n, on the accuracy of the

minimum vibration frequencies obtained by different models (see Table 1). Simply supported

composite cylinders with NL =10, E,/E;=15. G,+/Er=0.5. GrEr=0.3356, v, =03,
ver =049, Lry=10and m = |.
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hiry = 0.05 hiry, = 0.20
102 - 1.0 Model
[N |
1.00 ¢
09 °2
s 3
0.98 { ]
U/U gxact UiUexact 0.8 —
0.96 s
D6
0.94 0.7~ o3
0.92 1 1 1 0.6 | 1 1 ]
0 2 4 6 8 0 2 4 6 8
Circumferential wave number, n Circumferential wave number, n

Fig. 6. Effect of thickness ratio. A'r,. and circumferential wave number. n, on the accuracy of the

total strain energy obtained by different models (see Table 1). Simply supported composite cylinders

subjected to internal pressure p, = pysinndcosnt, NL =10, EE, =15, G, Er=0.5. G4 E,
=0.3356. v, =03, vppr =049 and Lir, = 1.0

through the thickness in model 2. which results in considerably overestimating the in-plane
stresses g, and a,. An exception to that ts the case of statically loaded thick cylinders (with
hry 2 0.2, see Fig. 6).

(3) The global response characteristics predicted by the higher-order shear-deformation
theortes (models 3 and 4) are fairly accurate. For multilayered cylinders with fr, €022
and # € 8, the maximum crrors in the mintmum frequency of vibration were less than
2.5% . Both models 3 and 4 slightly overestimate the vibration frequencies (sce Fig. §). For
the static loading case, they underestimate the total strain energy U (see Fig. 6). The small
differences between the predictions of models 3 and 4 point to the slow convergenee of the
displacement expansions used, egns (2). The distribution of the transverse stresses through
the thickness, obtained by models 3 and 4, is not as accurate as the gross response charac-
teristics (see Figs 9 and 1), This is particularly true for the transverse shear stresses, a, |
and the transverse shear strain energy density, U, |, obtiuned by models 3 and 4 as well as
the modal transverse normal stresses, a,, predicted by model 3 (see Fig. 9).

(4) The predictions of the simplifed higher-order theory (model 5) are fairly accuraie.
For multilayered cylinders with ir/r, < 0.2 and n < 8, the error in the minimum frequency
is less than 3.4% . A rapid degradation in accuracy oceurs in cylinders with A/r, > 0.2, as
the circumferential wive number increases beyond 4. Model 5 overestimates the vibration
frequencies and underestimates the total strain energy (sce Figs 5 and 6). The in-plane
displacements, v and ¢, predicted by this model are fairly accurate. However, the trunsverse
sheur stresses, o, predicted by this model are grossly in error. Morcover, the model does
not predict the transverse normal stresses, a, (see Figs 10 and 12).

(5) The global response characteristics predicted by the discrete-layer theory (model
6) are very accurate. The maximum errors in the minimum frequency of vibration were less

hir, = 0.05 hiry = 0.20
1.08 — 1.20
135 - Model
104 al
1.10 -
. 1A
2,2
o0l 0t 0wl . 07
1.05
1.02 o8
1.00 -
1.00 8 0.95
0 2 4 (] 8 0 2 4 6 8
Circumferential wave number, n Circumferantial wave number, n

Fig. 7. Effect of thickness ratio, i'ro, and circumferential wave number. a, on the accuracy of the

minimum vibration frequencies obtained by models 1. A, 7 and 8 (see Table 1). Simply supported

composite cvlinders with NL = 10, E,/Er = 15. G /Er = 0.5. G/ Ep = 03356, v, = 0.3, v = 049,
for, = POandm =1
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Table 2. Effect of composite correction factors and reanalysis procedure on the accuracy of the lowest vibration
frequencies obtained by models 1, IA and 8 (simply supported composite cylinders with NL = 10, £/E; = 15,
Liro=10andm=1)

Values of 0/l

Model Model 8
Taylor Full
n Qs U/ Ux 107 1 1A series reanalysis k. ky
(@) hiry =005, n=13
0 1.234 0 1.000 1.000 1.000 1.000 1.0 0.8015
1 0.5447 0.1950 1.001 1.000 1.000 1.000 0.7545 0.9154
2 0.2557 0.6523 1.002 1.001 1.001 1.001 0.7521 0.8649
3 0.1753 1.898 1.006 1.002 1.003 1.002 0.7556 0.8025
4 0.1938 4910 1.014 1.003 1.005 1.003 0.7610 0.7834
5 0.2987 9.267 1.024 1.002 1.007 1.003 0.7667 0.7768
6 0.5036 13.95 1.035 1.002 1.008 1.002 0.7718 0.7740
7 0.8288 18.65 1.045 1.001 1.009 1.001 0.7762 0.7725
8 1.295 23.30 1.056 1.000 1.010 [.000 0.7799 0.7716
(b) hiry = 0.20. 1 = 2

0 19.74 0 1.004 1.004 1.004 1.004 1.0 0.8146
l 11.77 12.17 1.030 0.999 1.004 0.999 0.7705 1.274
2 8.9313 2548 1.064 1.000 1.010 1.001 0.7692 0.8325
3 10.84 37.34 1.092 0.998 1.012 0.999 0.7703 0.7828
4 16.65 4925 1.122 0.994 1.009 0.993 0.7720 0.7701
5 26.06 59.45 1.148 0.990 1.002 0.985 0.7739 0.7650
6 38.88 67.23 1.168 0.986 0.994 0.978 0.7760 0.7624
7 54.95 7295 1182 0.981 0.986 0.971 0.7784 0.7609
8 74.18 77.14 1191 0.977 0.978 0.965 0.7809 0.7599

Qs = 10 x phl WJEr. In model 1, k, =k, = | and in model 1A, k, = k, = 0.7731, as computed from the
cylindrical bending condition of Chow (1971) and Whitney (1973).

than 0.6 % . For cylinders with A/r, < 0.1, the total strain energics predicted by this model
are similar to those predicted by model 4 (sce Fig. 6). As &i/r, increases the accuracy of the
total strain energy predicted by this model decreases. The distributions of in-plane stresses,
transverse shear stresses, and displacements through the thickness obtained by model 6 are
fairly accurate (see Figs 9 and 11). However, the model does not predict transverse normal
stresses, ¢,. Note that for NL > 8 the number of displacement parameters used in this
model exceeds those used in all other models,
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Fig. 8. Effect of the thickness ratio, 4/r,. on the distribution in the thickness direction, of displace-

ments, stresses and transverse shear strain energy density, associated with minimum vibration

frequencies. Simply supported composite cylinders with L/r,=1.0, NL =10, E/E; = IS,
GiEr =05.Gr/Er =0.3356,v,, =03, v/ =049 and m = |.
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(6) The accuracy of the predictions of the simplilicd discrete-layer theory, model 7, is
comparable to that of the first-order shear deformation theory with the same number of
displacement parameters, mode! [0 This is true for both the global as well as detailed

response characteristics.
{7) The predictor corrector approach (model 8) appuars to be a very effective procedure
for the accurate determination of the global, as well as the detailed response characteristics
of eylinders. Specifically, the following four observations can be noted :

k,. are fairly insensitive to their initial values, &Y and

(a) The numerical values of the corrected compostte shear correction factors, b, and

A used in the

first-order shear-

deformation theory, They depend on the distributions of the transverse shear strains in the
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thickness direction which, in turn, arc functions of both the lamination and geometric
parameters of the cylinder.

(b) I k7 and & are both sclected to be 1, the error in the global response quantities
obtained in the first (predictor) phase, for shells with NL = 10, /i/r, 2 0.2, and # 2 4, may
be unaceeptable; however, the corrector phase improves these predictions substantially,
and results in highly accurate distributions of displacements and stresses through the
thickness (sce Figs 7, 10 and 12).

(¢) The accuracy of the response quantitics obtained using the predictor corrector
approach is insensitive to the initial shear correction factors selected. It is ulso insensitive
to the selection of the reanalysis procedure in the correction phase. For example, when the
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Fig. 12. Accuracy of displacements, stresses, and transverse shear strain energy density obtained by

models 5 and 8 (see Table 1). Simply supported composite cylinder subjected to internal pressure

po=pysinaicosf NL =10, £/E; =15 G, /E, =0.5. G/E; = 0.3356, v, , = 0.3, v = 0.49,
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Tuble 3. Relative magnitudes of the maximum displacements und stresses obtuined
by the threv-dimensional elasticity model (simply supported compusite evlinders with
NLe=10E, E, =15 Lr,=10uandm = 1)

Free vibrutional response

Static response

hr,=003% frry =010 hr,=402 frr,=02
n=73 n=3 no=2 n=1
(Fig. &) (Fig. %) iFigs 8-1th (Figs 1T and Iy
il ae 1970 0.099 0165 0,240 0.21%
ey 9 e 0.386 0444 0.589 0.604
15 s 1 e 0171 0,135 0.129 0.134
1 o 17 s .00 0043 0.080 2084
19 e 1T s 0.005 0.011 .01 0119

calculated composite correction factors are much different from their initial values, the
first-order Taylor scries approximation (with respect to the composite correction factors)
provides sufficiently accurate estimates for the response quantities (see Table 2).

{d) Because of the assumed through-the-thickness Hoeur distribution of strains i the
predictor phase. and the associated piccewise hincar distribution of stresses, the stress
conditions at the top and bottom surfaces, and at layer interfaces, cannor afl be satistied
simudtancoustv. The accuracy of the transverse stresses obtained by the predictor corrector
approach was tound to be somewhat sensitive to which conditions are satistied. Numerical
experiments have shown that good accuracy is obtained when the stress conditions at both
the top and bottom surfuces are satistied, and the discontinuitics in the transverse stresses
oceur at or near the middle surface. The stress discontinuitics can be reduced by using an
error distribution procedure. Such a procedure was not used in the present study.

The aforementioned observations point to the fact that accurate prediction of the
distribution of stresses and displacements through-the-thickness of multfavered cylinders
requires the use of three-dimensional equilibrinm and constitutive relations. These equitions
cun be used in an inexpensive, postprocessing mode with any of the modcling approaches
based on two-dimensional theories. The predictor corrector approach has the advantage
of starting with a simple first-order theory in the first phase to obtain estimates for the
global response characteristics, and then correcting these estimates before caleuluting the
displacement distribution in the thickness direction,

7. POTENTIAL OF THE PREDICTOR CORRECTOR MODELING APPROACH

The predictor corrector approach appears to have high potential for the accurate
prediction of vibration frequencies, stresses and deformations in multilayered composite
cylinders. The numerical studies conducted for simply supported laminated orthotropic
cylinders demonstrated the accuracy and effectiveness of this modeling approach. In par-
ticular, the following two points are worth mentioning

(1) The predictor corrector approach can be applied. in conjunction with finite element
models, to the analysis of anisotropic shells with arbitrary geometry. The calculation of the
transverse stresses, composite shear correction factors, and the correction phase can be
performed on the clement level for selected elements (in the critical regions of the shell
model).

(2) Although any of the two-dimensional shear-deformation shell theortes can be used
in the first (predictor) phase of the predictor-corrector approach, the first-order shear-
deformation shell theory has two major advantages over other theorics of: {a) only five
displacement parameters are used to deseribe the deformation : and (b) in the finite element
implementation only C° continuity is required. The simplified higher-order shell theory and
the simplified discrete-layer theory, models 5 and 7. share the first advantage. but require
C' continuity in their finite element implementation.
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8. CONCLUDING REMARKS

A study is made of the effects of variation in the lamination and geometric parameters
of multilayered composite cylinders on the accuracy of the static and vibrational responses
predicted by eight modeling approaches. based on two-dimensional shear-deformation
theories. The first seven modeling approaches considered are : first-order shear-deformation
theory (based on linear variation of u. v and constant w. through-the-thickness): first-order
theory with linear variation of u. ¢ and w through-the-thickness ; two higher-order theories
(based on cubic and quintic variations for u, r and w through-the-thickness): a simplified
higher-order theory (based on cubic variations of w, v through-the-thickness, but imposing
the transverse shear stress conditions at the top and bottom surfaces of the cylinder):
discrete-layer theory (with piecewise linear variation of the in-plane displacements in the
thickness direction); and a simplified discrete-fayer theory with the continuity of transverse
stresses imposed at layer interfaces to reduce the number of generalized displacement
parameters to five. The eighth model is a predictor-corrector approach based on using a
first-order shear deformation theory to predict the generalized displacements, tn-plane
strains and stresses in the plate: and using the equilibrium equations and constitutive
relations of the three-dimensional theory of elasticity to: (a) calculate the transverse
stresses, strains and strain energy distribution in the different {ayers; and (b) provide
accurate estimates for the composite shear correction factors and adjust the transverse shear
stiffnesses. The adjusted stiffnesses are used, in conjunction with a reanalysis technigque, to
obtain corrected estintes for the different response quantitics, The potential of the pre-
dictor-corrector approach for the accurate determination of the response characteristics of
multilayered shells with complicated geometry s also discussed.

Extensive numerical results are presented for simply supported laminated orthotropic
circular cylinders. Two key clements distinguish the present study from previous studies
reported tn the hiteratare: (a) the standard of comparison is taken to be the exact three-
dimensional clasticity solutions; and (b) quantitics compared are not limited to gross
response characteristics {e.gz., vibration frequencics, strain energy components, average
through-the-thickness displacements and rotations), but include detailed. through-the-
thickness distributions of displacements, stresses and strain energy densities.

Based on the numerical studies conducted, the following conclusions seem to be justified.

(1) For most practical problems, the transverse shear deformation has & much more
pronounced effect on the response of multifayered composite cylinders than that of trans-
verse pormal strain and stress, The latter can only become noticeuble (of the order of 20%
or more) for statically loaded thick eylinders and deformations with very short wavelength
(fry 2 0.2 and 1 2 8), and in the regions of highly localized loudings (or loadings with
sharp variations).

{2) The accuracy of the predictions of first-order shear-deformation theory is strongly
dependent on the values of the composite shear correction factors used. The use of the
composite shear correction factors proposed in Chow (1971) and Whitney (1973) results in
fairly accurate gross response characteristics for a wide range of lamination and geometric
parameters,

(3) The accurate prediction of the stress and displacement distribution through-the-
thickness of multilayered cylinders requires the use of three-dimensional equilibrium and
constitutive relations. These equations can be used in an inexpensive, postprocessing mode
with any of the modeling approaches based on two-dimensional theories.

{4) The predictor-corrector approach appears to be a very effective procedure for the
accurate determination of the global as well as the detailed response characteristics of
mulitilayered cylinders. The accuracy of the response quantitics obtained in the first (pre-
dictor) phase for cylinders with a thickness-to-radius ratio of the order of 0.2 may be
unacceptable. However, the corrector phase improves the predictions substantially and
results in highly accurate distributions of displacements and stresses through the thickness.
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APPENDIX A: FUNDAMENTAL EQUATIONS OF THE TWO-DIMENSIONAL
SHEAR-DEFORMATION THEORIES USED IN THE PRESENT STUDY

The fundamental cquations of the higher-order shear deformation theories used in the present study as given
i this Appendix.

Strain displacement relations
The strain compenents can be expressed in terms of the displacement parameters of egns (2) as follows:

A
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Constitutive relutions
The stress strain relations for a typical orthotropic fayer, &, of the cylinder are given by

”\ th} 1y {‘” o « . . hy £, 1y
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where ¢, ¢y ... €4, are the material stiffness cocllicients of the kth layer. The dilferent stress resultants are

obtained through piccewise integration in the thickness of eqns (A2),
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Strain and kinetic energies
The total strain energy of the cylinder, U, can be decomposed tnto three components as follows :

U=0+U,+0, (A})

where U, (. and U, are the bending-extensional. transverse shear. and transverse normal energies, respectively.
The expressions of U U, and U’ in terms of the stress und strain components are given by :
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where VL is the total number of layers.
The expression for the total kinetic energy of the cylinder, K. is given by :
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where ¢, = ¢/ ¢

First-order shear-deformation theory
The first-order shear-deformation theory used herein is based on the following assumptions (Ambartsumian,
1974 Dong and Tso. 1972 Noor and Peters, 1989b):

() lincar through-the-thickness variation of the displacements v and ¢;
(b) neglecting the transverse normal steain, £, and
(¢) generalized plane-stress state in each layer.
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The displacement field is completely described by the five parameters u oW = ¢l ' = ¢ where
¢ and @) are average through-the-thickness rotations, and the fundamental cquations of the theory are given
i Dong and Tso (1972) and Noor and Peters (1989b).

Correction factors are used to adjust the transverse shear stiffnesses and match the response predicted by
the two-dimensional theory with that of the three-dimensional clasticity theory. The range of validity of the first-
order shear-deformation theory s strongly dependent on the factors used in adjusting the transverse shear
stiffnesses of the cyhnder.

Simplificd higher-order theory

In the simplified higher-order theory used herein, assumption G of the first-order shear deformation theory
1s repliaced by that of a cubic variation, through-the-thickness, for the in-plane displacements o and ¢ In order
to retain the same number of displacement parameters as in the ficst-order theory, the transverse shear stress (and
straim) conditions are imposed at the top and bottont surfaces of the eylinder (sce, for example. Bhimaradds
1985 ; Khdeir ef uf., 1989 ; Librescu e af., 1989 ; Reddy and Liu, 1985).



